A semi-supervised fuzzy GrowCut algorithm to segment and classify regions of interest of mammographic images

نویسندگان

  • Filipe Rolim Cordeiro
  • Wellington Pinheiro dos Santos
  • Abel G. da Silva Filho
چکیده

According to the World Health Organization, breast cancer is the most common form of cancer in women. It is the second leading cause of death among women round the world, becoming the most fatal form of cancer. Despite the existence of several imaging techniques useful to aid at the diagnosis of breast cancer, x-ray mammography is still the most used and effective imaging technology. Consequently, mammographic image segmentation is a fundamental task to support image analysis and diagnosis, taking into account shape analysis of mammary lesions and their borders. However, mammogram segmentation is a very hard process, once it is highly dependent on the types of mammary tissues. The GrowCut algorithm is a relatively new method to perform general image segmentation based on the selection of just a few points inside and outside the region of interest, reaching good results at difficult segmentation cases when these points are correctly selected. In this work we present a new semi-supervised segmentation algorithm based on the modification of the GrowCut algorithm to perform automatic mammographic image segmentation once a region of interest is selected by a specialist. In our proposal, we used fuzzy Gaussian membership functions to modify the evolution rule of the original GrowCut algorithm, in order to estimate the uncertainty of a pixel being object or background. The ∗Corresponding author. Email addresses: [email protected] (Filipe R. Cordeiro), [email protected] (Wellington P. Santos), [email protected] (Abel G. Silva-Filho) Preprint submitted to Expert Systems with Applications January 8, 2018 ar X iv :1 80 1. 01 44 3v 1 [ cs .C V ] 3 D ec 2 01 7 main impact of the proposed method is the significant reduction of expert effort in the initialization of seed points of GrowCut to perform accurate segmentation, once it removes the need of selection of background seeds. Furthermore, the proposed method is robust to wrong seed positioning and can be extended to other seed based techniques. These characteristics have impact on expert and intelligent systems, once it helps to develop a segmentation method with lower required specialist knowledge, being robust and as efficient as state of the art techniques. We also constructed an automatic point selection process based on the simulated annealing optimization method, avoiding the need of human intervention. The proposed approach was qualitatively compared with other state-of-the-art segmentation techniques, considering the shape of segmented regions. In order to validate our proposal, we built an image classifier using a classical multilayer perceptron. We used Zernike moments to extract segmented image features. This analysis employed 685 mammograms from IRMA breast cancer database, using fat and fibroid tissues. Results show that the proposed technique could achieve a classification rate of 91.28% for fat tissues, evidencing the feasibility of our approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of supervised and semi-supervised GrowCut applied to segmentation of masses in mammography images

Breast cancer is already one of the most common form of cancer worldwide. Mammography image analysis is still the most effective diagnostic method to promote the early detection of breast cancer. Accurately segmenting tumors in digital mammography images is important to improve diagnosis capabilities of health specialists and avoid misdiagnosis. In this work, we evaluate the feasibility of appl...

متن کامل

Improvement of Breast Cancer Detection Using Non-subsampled Contourlet Transform and Super-Resolution Technique in Mammographic Images

Introduction Breast cancer is one of the most life-threatening conditions among women. Early detection of this disease is the only way to reduce the associated mortality rate. Mammography is a standard method for the early detection of breast cancer. Today, considering the importance of breast cancer detection, computer-aided detection techniques have been employed to increase the quality of ma...

متن کامل

An Efficient Method for Breast Mass Segmentation and Classification in Mammographic Images

According to the World Health Organization, breast cancer is the main cause of cancer death among women in the world. Until now, there are no effective ways of preventing this disease. Thus, early screening and detection is the most effective method for rising treatment success rates and reducing death rates due to breast cancer. Mammography is still the most used as a diagnostic and screening ...

متن کامل

Computerized classification of microcalcifications on mammograms using fuzzy logic and genetic algorithm

The purpose of this study is to develop a computerized scheme for the discrimination between benign and malignant clustered microcalcifications that would aid radiologists in interpreting mammograms. In our scheme, microcalcifications in regions of interest (ROIs) are detected by using morphological filter. Then, four feature values including the total number, mean area, mean circularity and me...

متن کامل

Document Analysis And Classification Based On Passing Window

In this paper we present Document analysis and classification system to segment and classify contents of Arabic document images. This system includes preprocessing, document segmentation, feature extraction and document classification. A document image is enhanced in the preprocessing by removing noise, binarization, and detecting and correcting image skew. In document segmentation, an algorith...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2016